Heat Treating Music Wire
by Roy Vaillancourt

About the author:
Roy Vaillancourt is the president of Vailly Aviation, a part time venture, catering to giant scale enthusiasts. Roy and his wife, Nancy, have operated Vailly from their home since 1986. Roy, whose specialty is giant scale warbirds, is an active scale contestant who has competed regularly at the Top Gun and Scale Masters Championships for the past ten years. He is a frequent contributor -- on a variety of topics -- to the major scale modeling magazines and to our own Articles and Tips department. A mechanical engineer with two advanced degrees and over thirty years experience in design and manufacturing, Roy works full time as a senior design specialist for Lockheed Martin.

The music wire used by sailplane modelers to make landing gear and cabin struts is medium carbon steel heat-treated to spring temper or about 45 on the Rockwell C scale of hardness (RC45). On this scale, RC20 is soft, RC45 is tough, and RC60 is hard. Tough wire can be bent and cut using the proper tools and techniques, but sometimes it's just too difficult to work with.

One way to soften steel music wire is to heat it, which makes it easy to bend and form. But after heating and forming, the subsequent cooling -- often at an uncontrolled rate -- can make the finished wire too hard or too soft since its hardness is determined by the rate at which it cools. For some parts, the final hardness isn't critical. But a landing gear formed from wire softened too much won't spring back to its original position; and a gear made from wire cooled to a harder than normal state will snap on its first use. To restore the wire to its original specific spring temper, it must be heat-treated a second time and cooled at a controlled rate.

Three Steps

To form wire easily, first anneal it; next, form or bend it to the desired shape; and then heat-treat the part back to spring condition -- that is, temper it.

First the wire should be annealed at the location to be bent. To anneal it, heat the wire with a torch until it becomes a bright cherry red -- about 1400 degrees Farenheit. Let it cool completely to the touch. Don't quench or blow on it. Just let it cool naturally away from any drafts. The wire should now be in the RC25 soft range, and it will bend easily. After forming, once again heat the wire with a torch until it becomes bright cherry red, but this time quench it -- that is, cool it rapidly by immersing it in room temperature water. Plunge the steel into the water with a twisting, swirling motion to keep water vapor from insulating the wire against the cooling action of the water.

At this point the wire should be very hard, probably above RC60. To test the hardness, try to make a mark on the worked area with a file. The file should slide off without cutting into the steel at all. If it cuts the wire, try the heat quench cycle again. If the file still cuts the wire, it isn't high carbon steel. Get another piece of wire and start over -- you won't be able to add the necessary carbon to low-carbon steel. When the file test signals success, the wire is ready for the final step, but not for use, because it's very hard and quite brittle, and will probably snap off.

The final step is to temper the wire back to the desired hardness. Tempering is a form of annealing but is controlled so that the steel achieves a specific hardness. Start by sanding the wire with steel wool or emery cloth. Then heat it gradually with the torch. Watch for the following colors as a guide: straw color (350 degrees), followed by dark blue...
(600 degrees), and then medium blue (750 degrees). At this point, remove the wire from the heat and allow it to cool slowly. Don’t quench it or blow on it; just let it cool naturally in still air. Once the steel returns to room temperature, it should be at the target RC45 hardness, which has a good spring temper. Try the file test again. You should be able to make a mark now, but only with some effort. If it passes this test, the wire is properly tempered.

Besides parts for model planes, tempered music wire can also be used to make special purpose tools. Instead of tempering to 750 degrees (medium blue), stop at the straw color stage. The wire will be at about RC60, which is still very hard, but not brittle. Wire at this temper can be used to drill wood and plastics, and most aluminum and copper.

Notes

1. **Rockwell hardness testing**, named after Stanley Rockwell who made his first testing machine in 1921, is a general method for measuring the bulk hardness of metallic and polymer materials. Although hardness testing does not measure performance properties, hardness correlates with strength, wear resistance, and other properties.

Rockwell hardness testing is an indentation testing method. An indenter is impressed into the test sample at a prescribed load to measure the material’s resistance to deformation. A Rockwell hardness number is calculated from the depth of permanent deformation of the sample after application and removal of the test load. Various indenter shapes and sizes combined with a range of test loads form a matrix of Rockwell hardness scales that are applicable to a wide variety of materials. The Rockwell B and C scales are used for metallic substances.

2. **Anneal**: To heat and then cool (as steel or glass) usually for softening and making less brittle.

3. **Quench**: To cool (as heated metal) suddenly by immersion (as in oil or water).

Bibliography

For more information about working with metals in general and about hardness testing in particular consult these books by noted metallurgist, Harry Chandler.

Special Report
Heat Treating Music Wire
By: John Goscinski

There has been some discussion the past month or so within the club about how to treat landing gear wire that keeps bending. Howard Chana brought up the subject, I believe. There was a problem with 3/16 wire – which is usually thought of as heavy duty – that keeps bending. I knew I had seen some info about this on-line, so I looked it up again. A web search will easily turn up pages of material about steel and how to heat treat it. A few of these have the info us modelers are looking for. One article I found was researched and written by a modeler, specifically for model airplane applications.

Music wire is medium carbon steel that is tempered to a spring hardness. Usually if you make your landing gear from the right size of music wire, without heating it, it will stand up to use just fine. However, sometimes the stuff is just too tough to work with cold. Sometimes, maybe a kit is supplied with cheap wire that isn't tempered well, and bends too easily. Please note that this article does not apply to aluminum wire. You can't heat treat cheap aluminum. If weight considerations allow, replacing aluminum with the same or smaller diameter of music wire will take care of any strength issue.

Now, if you want to work with music wire, you can heat it and bend it while hot. You can also heat it cherry red and let it cool slowly. This is called annealing. Annealed steel is it’s softest cool state and can usually be bent easily without risk of burns

Once it is formed, you need to temper it to spring hardness. To do that, first you heat it cherry red again, and quench it in water or oil. At this point it will be brittle-hard. I have been able to break brittle 3/16 music wire by hand. It is too brittle to use. It snaps like glass. You can check if it is quenched well by trying to mark it with a file or saw. It should not take a mark. If it does get marked, try to quench it again. If it still takes a mark, it’s not good steel. Throw it away and go get real music wire.

Once it’s quenched, it’s ready to temper back to spring hardness. Luckily, you can do this by eye, because clean steel turns different colors as it heats. Yellow straw color is 350F. Dark blue is 600F and light blue is 750F. So, first you want to take your quenched steel piece and clean it with some steel wool to get a smooth surface. Then heat the wire with a torch looking for the color change. You need to see the color change over the whole area you want to temper. For regular spring steel, heat it until the light blue stage. For a bit harder, only heat to dark blue.

If you screw up, the great thing is you can start over by heating and quenching again and re-temper.